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An inertial flow of a granular material can be described by the laws of conservation of mass, 
momentum, and energy of random motion of solid particles by invoking some closing relations. 
In this work, these closing relations are inferred from the dimensional theory. The system of 
equations obtained is used to determine characteristics of a steady flow of a bed of a granular 
material down an inclined surface with a microrelief for various Richardson numbers and finite 
contact times of the particles during their collisions. 

There are many scientific and technological problems concerning the flow of dry granular materials 
consisting of solid particles. Among these problems are those related to mining raw mineral materials, powder 
and ceramic technologies, production of new materials, and grain storage and transportation. Granular  media 
are also involved in many geophysical processes, including avalanches. 

Thc fundamentals of the present-day concepts of the mechanics of such media can be found in many 
reviews and articles (see, e.g., [1] and the bibliography there). Depending on the density of the medium and 
tile shear velocity of the flow, two liraiting regimes can be distinguished: 1) quasi-steady flow that  corresponds 
to high concentrations of granules and low shear velocities (the particles are in permanent tight contact, and 
the behavior of the material can be well described by the Coulomb-Mohr law of dry friction r = a tan ~ that 
relates the shear stress r and the normal stress or, where ~ is the internal-friction angle equal, for example, to 
37 ~ for fine sand); 2) inertial flow that corresponds to lower concentrations of granules and higher flow shear 
velocities [there are always gaps (on the average) between the granules, and the granules interact colliding 
with one another]. 

According to [1-3], an inertial flow of a granular material can be described using the laws of conservation 
of mass, momentum, and energy by invoking some closing relations between the pressure, viscosity, thermal 
conductivity, and dissipation rate of the energy of random motion of the granules, on the one hand,  and the 
density and energy of the granules, on the other. For the inertial flow, there is a number of closing schemes, for 
example, schemes based on the kinetic theory of dense gases [4-7] and schemes devised from the dimensional 
theory [3-8]. It should be noted here that, in the intermediate case of high concentrations and moderate 
shear velocities, the model of the power-law non-Newtonian fluid with the power exponent n -- 2 seems to be 
quite satisfactory since both  experiments and estimates show that the stresses and shear velocities are related 
by a square dependence. In this model, the effect due to intergranular collisions, which can be described 
by a scalar function (the energy of random motion of the granules), is ignored. In the present work, we use 
an approach previously proposed in [8, 9] to analyze a steady flow of a bed of a granular material down an 
inclined surface with a microrelief. 
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We consider a s teady flow of a bed of a granular material  down an inclined surface installed at an 
angle r to the horizontal plane and introduce Cartesian coordinates.  The x- and y-axes are directed along 

the inclined surface and normal to it; the coordinate y = 0 corresponds to the solid surface. We describe 
the granular material  as a continuous medium by the laws of conservation of mass, momentum,  and energy 
of random motion of the granules. In the steady state, all the functions of interest are dependent  solely on 
the y coordinate,  and the macroscopic velocity of the flow of particles possesses only one component  directed 

down the inclined surface: u = {u(y),  0, 0}. Therefore, the continuity equation is identically satisfied, and 
the equations for the two components of the momentum and for the root-mean-square velocity v of random 
motion of the granules, as in [9], are 

p cos , dy ~yy ~/~yy = -pgs ing ; ,  ~yy ~e~yy \ - -~ - / j  +7/ ~yy = I .  (1) 

Here p is the density of the granular material, p is the pressure, 7] is the viscosity, a~ is t h e  diffusivity of 
the energy of random motion, and I is the dissipation rate of random motion of the granules due to their 
inelastic collisions. The  density p of the material can be expressed via the density pp of the substance of the 
granules by the formula p = #pa3/(a + s) 3, where a is the granule diameter and s is the mean free path of the 
granules, so tha t  a + s is the mean distance between the centers of the particles. To obtain closing relations, 
following [3, 8, 9], we apply the dimensional theory to the desired quantities. For example, the dimensional 

representation of pressure is the product of the dimensions of mass and acceleration divided by the dimension 
of area. After each collision, the momentum of a granule changes, in order of magnitude, by my.  Dividing 
this change in the momentum by the mean time between the collisions te, adopting the quanti ty (a + s) 2 
as a characteristic area, and representing the particle mass as m ~ p(a + s) 3, we obtain p ,~ p(a + s)v/ te .  

Analogous est imations give 

p = app(~ + * ) v h e ,  ~ = a~p(a + s )~he ,  ~ = a~p(a  + *)2/t~, X = axp(1 -- e2)v2/t~, (2) 
where ap, a~, a~, and a I are dimensionless multipliers of the order  of unity and e is the coefficient of velocity 
restitution in inelastic collisions. 

Following [8, 9], we represent the time elapsing between the collisions as te = t I + to, where t / =  s / v  is 
the mean free time, tc = a a / c  is the time of intergranular contact ,  c = ( E / p )  1/2 is the velocity of the elastic 
wave excited in the colliding granules, E is the modulus of elasticity, and ~ is a dimensionless parameter.  If 
c~ = 2, then the contact  t ime is the time required for the excited elastic wave to execute forward and reverse 
traveling over the granule diameter. In the case of perfectly rigid granules, their contact t ime during collisions 

is infinitely short .  
Insert ing into (2) the mean time elapsing between collisions and representing the mean free path via 

the density of the material ,  we obtain the desired closing relations in the form 

appv2 a~apP(P/pp)2/3v aaea(p/Pp)2/3v I = e l (1  - e2) (p /pp) l /3pv  3 
p =  f , 71= f , a~= f , a f  , (3) 

where f = 1 - (p /pp) l /3 (1  - av /c ) .  Thus, the pressure and the dissipative coefficients are expressed as 

functions of the density of  the granules and the velocity of their  random motion. 
From the first two equations of system (1), it follows tha t  d u / d y  = ( p / ~ ) t a n  ~b. Substi tuting this 

expression into the third equation of system (1) and using relations (3), we obtain 

] 2,,. o; =-picosr 7 ~  (p~2) + . . . .  a:a~ ~ f ap -~y 

d_uu = ap ( p ~ l / a v t a n r  (5) 
dy ana \ p p /  

Here h = (a2/an)  tan 2 r - al(1 - e2). System (4) allows one to determine the concentration of the granules 
and the average velocity of their random motion, and Eq. (5) the velocity of the macroscopic motion of the 

medium. 
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To formulate the problem, it is required to specify four boundary conditions at the inclined surface and 
at the free surface of the free-flowing bed as we have two first-order equations for the density and longitudinal 
velocity and one second-order equation for the thermal  velocity. Assuming the inclined surface to have a 

microrelief, we adopt here the no-slip condition u(0) = 0 and the condition v(0) = vw. At the free surface, 
the flux of thermal energy should vanish, which is equivalent to the condition (dv/dy)y=1-1 = O. As to the 
boundary  condition for the granule concentration, the situation here is less definite. For moderate densities 
of the granular material (which is the case of interest),  the bed is bounded from above by a comparatively 
narrow transition region between the colliding granules and the granules tha t  move without collisions in 
the gravitational field. In this region, the particle concentration changes abruptly. The freely travelling 
granules come back to the region with a higher concentrat ion and bring there momentum and energy, while 
the particles that  escape from the collision region carry momentum and energy over to the region with a 
lower concentration. In a number of works (see, e.g., [1, 10, 11]), the density at the free surface was assumed 
to equal zero, but this condition cannot be applied to a medium in which the granules play the main and 
only part ,  since the influence of air is ignored and the assumption about the continuity of the medium, which 
is normally used in various models of granular media,  is violated. Therefore, a certain finite density of the 
material p(H) = ps is assumed at the free surface of the bed. 

We represent Eqs. (4) and (5) in the nondimensional form by introducing the reference length a and 
reference velocity v0: 

• d d 1 _ 
[p2 /% ( 9 ) j  + -  - 0 ;  (6) 

dy ap 

du ap 
- -  = - -  pl/3v tan ~b. (7) 
dy a n 

Here f = 1 - pl/a(1 - ~v) , /3 = c~v0/c, and R = ag/v2o is the Richardson number.  
To solve system (6) numerically, we represent it in the form of three first-order equations. Performing 

differentiation in the first equation, we establish the relation between dp/dy and dv/dy; then, differentiating 
the thermal-energy density with respect to the coordinate,  we substitute the resultant expression for dp/dy 
into the energy equation. Thus,  we obtain the following system of equations: 

dp CD "~ / A dv D dq 2hp4/3v a 
_ / LB + - - -  = (8) 

dy 2p --C-v/A)  / ' dy 2p - C v / A  ' dy aaJ ' 

where 

A = v  1 -  p l /a(1-C3v)  B = R f 2 p c ~ 1 6 2  C = p ( 2 f - ~ p l / a v ) ,  D -  fq + . 
' apV ' p2/3v A 

One of the boundary conditions is specified at the inclined surface: v(0) = vw, and two others at the free 
surface: p (H)  = Ps and dv (H) /dy  = O. Using the last two conditions, we find the value of the desired 

auxiliary quanti ty q at the free surface: 

5/3 
qs = Rps vs[1 - p~/3(1 - /3vs)]  cos r  v~ = v ( g ) .  

ap[1 - - Zvs)] 

To solve system (8) numerically, we use the shooting method: at the free surface y -- H,  in addition 
to p~, we specify an arbi t rary value of v~, draw the  solution to the plane y = 0, compare the obtained value 
v(0) with the given v~; if these values do not coincide, we choose a new value of v~, etc., until the boundary 
condition for the thermal velocity at the inclined surface becomes fulfilled. Then,  from the obtained values 
of the density of the granules and velocity of their  random motion, using Eq. (7), we determine the velocity 
of the medium down the inclined surface. All first-order equations are solved by the Runge-Kut ta  method. 

We consider the calculation results for the flow of interest for ~b = 20 ~ e -- 0.9, vw = 1, and H = 20 
for several values of the Richardsbn number and the coefficient/3 that  characterizes the contact time of the 
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colliding granules. Figures 1 and 2 show the in-depth (across the bed) distributions of the velocity v of 
random mot ion  of the granules (curve 1), the density p (curve 2), and the macroscopic velocity u of the 
particles (curve 3). Figure la -c  corresponds to the case/3 = 0 and R = 0.1, 0.02, and 0.01, and Fig. 2a and 
b to the case /3  = 0.2 and 0.5 for R = 0.01. When the Richardson numbers are sufficiently low, a fluidized 
bed arises on the inclined surface, in which the granules have an appreciable energy of random motion. A 
decrease in the  Richardson number, which, at a constant granule size, corresponds to a rise in the inflow of 
the thermal  energy from the inclined surface into the granular bed, results in an increased thickness of the 
fiuidized bed (Fig. 1). For R = 0.1, 0.02, and 0.01, the ratio of the thickness of the fluidized bed to the 
total thickness of the granular bed equals A ~ 0.2H, 0.3H, and 0.4H. At the same time, the density of the 
granules on the  inclined surface decreases: p(0) = 0.42, 0.13, and 0.07 for R = 0.1, 0.02, and 0.01, which 
corresponds to  the mean free path s - 0.33, 0.96, and 1.38, respectively. The  density of the substance in the 

granular bed  increases from p(0) up to a certain maximum value Pmax inside the layer, and then decreases 
to Ps. The  value Pmax depends on the Richardson number, decreasing with decreasing R. In all the cases 
considered, the  in-depth distribution of the velocity of random motion of the granules is qualitatively similar: 
a monotonic growth from vw at y = 0 to a certain value vs ~ 0.02. The  macroscopic velocity of the granular 
flow decreases with decreasing Richardson number: Umax ~ 1.37, 0.93, and 0.75 for R = 0.1, 0.02, and 0.01, 
respectively. 

To es t imate  the effect of the contact t ime on v, p, and u, we carried out the same calculations for 
R = 0.01 a n d / 3  = 0.2 and 0.5 (Fig. 2). An increase in the contact t ime results in the following changes in 
the density profiles of the particles in the bed: the density p(0) increases with increasing/3, the thickness of 
the fluidized bed decreases, and the macroscopic velocity of the flow rises. 
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Thus, the study performed has revealed the formation of a fluidized bed in the flow of a granular 
material down an inclined surface with a relief. The thickness of the fluidized bed increases with intensified 
inflow of energy to the random motion of the granules. Allowance for the finite contact time, all other 
conditions being equal, results in a decreased thickness of the fluidized bed and an increased concentration 
of particles in the immediate vicinity of the inclined surface. 

The author would like to thank Yu. A. Berezin for the proposed problem and fruitful discussions. 
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